Mechanics
velocity
|
|||
|
|||
|
acceleration
|
|||
|
|||
|
equations of motion
|
v = v0 + at
x = x0 + v0t + ½at2 v2 = v02 + 2a(x − x0) v̅ = ½(v + v0) |
newton's 2nd law
|
|||
∑ F = m a
|
|||
|
weight
|
W = m g
|
dry friction
|
ƒ = μN
|
centrip. accel.
|
|||
|
|||
ac = − ω2 r
|
momentum
|
p = m v
|
impulse
|
|||
J = F̅ Δt
|
|||
|
impulse-momentum
|
||
F̅ Δt = m Δv
|
||
|
work
|
|||
W = F̅Δs cos θ
|
|||
|
work-energy
|
||
F̅Δs cos θ = ΔE
|
||
|
kinetic energy
|
K = ½mv2
|
general p.e.
|
|||
|
|||
F = − ∇U
|
gravitational p.e.
|
ΔUg = mgΔh
|
efficiency
|
|||
|
power
|
||||
|
P̅ = F̅v cos θ
|
|||
|
P = F · v
|
angular velocity
|
|||
|
|||
|
|||
v = ω × r
|
angular acceleration
|
|||
|
|||
|
|||
a = α × r − ω2 r
|
equations of rotation
|
ω = ω0 + αt
θ = θ0 + ω0t + ½αt2 ω2 = ω02 + 2α(θ − θ0) ω̅ = ½(ω + ω0) |
2nd law for rotation
|
|||
∑ τ = I α
|
|||
|
torque
|
τ = rF sin θ
|
τ = r × F
|
moment of inertia
|
|||
I = ∑ mr2
|
|||
|
rotational work
|
|||
W = τ̅Δθ
|
|||
|
rotational power
|
P = τω cos θ
|
P = τ · ω
|
rotational k.e.
|
K = ½Iω2
|
angular momentum
|
L = mrv sin θ
L = r × p L = I ω |
universal gravitation
|
||||
|
gravitational field
|
||||
|
gravitational p.e.
|
|||
|
gravitational potential
|
|||
|
orbital speed
|
|||
|
escape speed
|
|||
|
hooke's law
|
F = − k Δx
|
elastic p.e.
|
Us = ½kΔx2
|
|
simple pendulum
|
|||
|
frequency
|
|||
|
angular frequency
|
ω = 2πƒ
|
density
|
|||
|
pressure
|
|||
|
pressure in a fluid
|
P = P0 + ρgh
|
buoyancy
|
B = ρgVdisplaced
|
mass flow rate
|
|||
|
volume flow rate
|
|||
|
mass continuity
|
ρ1A1v1 = ρ2A2v2
|
volume continuity
|
A1v1 = A2v2
|
bernoulli's equation
|
|
P1 + ρgy1 + ½ρv12 =
|
P2 + ρgy2 + ½ρv22
|
dynamic viscosity
|
|||
|
|||
|
kinematic viscosity
|
|||
|
aerodynamic drag
|
R = ½ρCAv2
|
mach number
|
|||
|
reynolds number
|
|||
|
froude number
|
|||
|
young's modulus
|
|||||
|
shear modulus
|
|||||
|
bulk modulus
|
|||||
|
surface tension
|
|||
|
No comments:
Post a Comment